Synthesis and Structure of Cl₃SnRu₂(CO)₅Cl₃

By R. K. POMEROY, M. ELDER, D. HALL, and W. A. G. GRAHAM* (Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada)

TETRAFALIDES of germanium and tin have been reported to react with pentacarbonyliron to form cis-(OC)₄Fe(X)MX₃ (M = Ge, Sn; X = Cl, Br, I), which is transformed on warming into cis- or trans-(OC)₄Fe(MX₃)₂.¹ It was observed in the same study (although not reported) that dodecarbonyltri-iron afforded the same products under slightly more vigorous conditions. We report here the different course of the reaction in the case of dodecacarbonyltriruthenium.

At temperatures above 100°, $\operatorname{Ru}_3(\operatorname{CO})_{12}$ reacts with MX₄ to form air-stable crystalline derivatives which analyse as $\operatorname{Ru}_2(\operatorname{CC})_5\operatorname{MX}_6$. Thus, its reaction with SnCl_4 (135° in xylene) affords $\operatorname{Ru}_2(\operatorname{CO})_5\operatorname{SnCl}_6$ in 90% yield as pale yellow crystals, m.p. 178°, with i.r. carbonyl stretching bands at 2154s, 2094s, 2084s, and 2031s cm.⁻¹ (CH₂Cl₂ solution). The molecular ion is observed in the mass spectrum at m/e 674; interestingly, a stronger peak due to $(P-\operatorname{SnCl}_2)^+$ occurs at m/e 486.

The structure of $\operatorname{Ru}_2(\operatorname{CO})_5\operatorname{SnCl}_6$, as established by an X-ray crystallographic study, is shown in the Figure. Data were collected by counter methods; 886 unique non-zero reflections were refined by least-squares techniques to a final conventional residual of 6.4%. Each ruthenium atom is at the centre of a distorted octahedron, with the two octahedra sharing a face.

The structures of two other triply chlorine-bridged diruthenium molecules have recently been reported.^{2,3} In both cases, the terminal positions were occupied by chlorine atoms and phosphine groups, and a shortening of bridging-chlorine-ruthenium distances *trans* to terminal chlorines was observed. The effect was attributed to the lower *trans*-effect of chlorine. In the present structure, bridging chlorines are equidistant from the ruthenium atoms, within error. The implication is that Cl_3Sn^- and CO have similar *trans*-effects, or, more precisely, that the *trans*-bond

weakening effect of the two ligands as judged from this compound is the same.

Delocalization of the odd electron in (Bun₃P)₄Ru₂Cl₅ has been suggested³ to account for the Ru-Ru distance² ($3 \cdot 115$ Å); it is interesting that the Ru-Ru separation reported here is almost as short (3.157 Å), although no metal-metal interaction need be invoked. These distances are significantly shorter than the Ru-Ru separation in (Et₂PhP)₅Ru₂Cl₄ (3.367 Å) but much longer than the Ru-Ru bond in Ru₃(CO)₁₂ (2.848 Å).4

FIGURE. Molecular structure of Cl₃SnRu₂(CO)₅Cl₃. Important bond lengths are: Ru-Ru, 3·157(4); Ru-Sn, 2·565(4); Sn-Cl (mean), 2·347 (7); Ru-Cl (mean), 2·433(5) Figures in parenthesis are standard errors or standard errors in the mean.

- ¹ R. Kummer and W. A. G. Graham, Inorg. Chem., 1968, 7, 1208.
 ² G. Chioccola and J. Daly, J. Chem. Soc. (A), 1968, 1981.
 ³ N. W. Alcock and K. A. Raspin, J. Chem. Soc. (A), 1968, 2108.
 ⁴ R. Mason and A. I. M. Rae, J. Chem. Soc. (A), 1968, 778.
 ⁵ C. W. Bradford and R. S. Nyholm, Chem. Comm., 1968, 867.
 ⁶ J. D. Cotton, S. A. R. Knox, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 2758.

At room temperature in benzene, SnCl₄ and Ru₃(CO)₁₂ react to form a yellow compound Ru₃(CO)₁₂,SnCl₄ which exhibits carbonyl stretching bands at 2150m, 2120m, 2089sh, 2073s, 2057s, 2039w, 2019w cm.-1 in dichloromethane. This resembles the spectrum reported for $Cl[Os(CO)_4]_3AuPPh_3,^5$ and a similar linear Ru-Ru-Sn backbone is assumed. In the high-temperature reaction, further cleavage of Ru-Ru bonds would form (OC)₄Ru(Cl)-SnCl₃; dimerization and loss of SnCl₂ according to the following scheme would form the product:

The expected quantity of SnCl₂ is recovered. When the reaction is carried out under 70 atmos. carbon monoxide, the product is $trans-(OC)_4 Ru(SnCl_3)_2$ [v(CO) at 2106 cm.⁻¹, dichloromethane]. The trans-form is stable in solution, in contrast to trans- $(OC)_4$ Fe $(SnCl_3)_2$, which rapidly isomerizes to the cis-form.¹ These observations are reconciled if it is assumed that the Cl_3Sn group has almost the same π acceptor capability as CO when bonded to ruthenium; then both cis- and trans-forms would be equally preferred from the electronic standpoint, and steric factors would determine the structure. Stone and his co-workers have applied similar arguments to the stereochemistry of $(OC)_4 Ru(SnR_3)_2$ derivatives.6

(Received, February 24th, 1969; Com. 248.)